13-Po06: Noda et al.

Alignment measurement with optical transponder system of Hayabusa-2 LIDAR

Hirotomo NODA¹, Takahide MIZUNO², Hiroo KUNIMORI³, Hiroshi TAKEUCHI², Noriyuki NAMIKI⁴

- ¹National Astronomical Observatory of Japan (NAOJ)
- ²Japan Aerospace Exploration Agency (JAXA)
- ³National Institute of Information and Communications Technology (NICT)
- ⁴Chiba Institute of Technology

Introduction

- Japanese Hayabusa-2 is a mission to C-type asteroid 1999 JU 3, and will be launched in 2014 winter
- LIDAR (Laser altimeter) is aboard Hayabusa-2 for navigation and geodetic science.
- LIDAR is equipped with "optical transponder" function for optical link experiment
- Optical link experiment between ground SLR station and Hayabusa-2 LIDAR is scheduled when satellite flies near Earth during Earth Swing-by in 2015 winter.
- The experiment will give the first opportunity to check the performance of LIDAR (link budget, alignment, ...)

Hayabusa-2 mission to asteroid

Year/month	events	
2014/winter	launch	
2015/12	Earth gravity assist	
2018/6	Arrival at 1999 JU3	
	remote sensing, sampling	
2019/End	Departure from 1999 JU3	
2020/12	re-entry to Earth	
	Research based on sample data	

Target asteroid 1999 JU₃

Name	1999 JU3
Diameter	0.9 km
Albedo	0.05-0.07
Spectral type	С
Rotation period	7.63 hours

Hayabusa2 LIDAR

Specification of LIDAR

wavelength	1064 nm
Laser power	10 mJ
Repetition rate	1 Hz
Pulse width	<10 nsec
Transmitter FOV	1 mrad
Receiver FOV (far)	1.5 mrad
Range resolution	0.5 m ⁵

Science targets by LIDAR

- Shape modeling and gravity measurement gives average porosity of target asteroid, which is important to characterize the asteroid
- Albedo measurement at laser wavelength: with visible and Near-IR albedo data, it will constrain the surface material
- Detection of levitation dust: so far there is no observational evidences of circum-asteroid environment. If detected, it will be the first observation of dust around asteroids.

Measurement requirement

- Porosity is a key parameter to characterize asteroids
- Porosity can be estimated from volume and mass

Figure 2. Relation of effective diameter and bulk porosity of asteroids. In addition to estimates by *Baer et al.* [2011], data taken from literatures are shown. Inferred internal structures such as fractured, monolithic and rubble-pile are based on classification by *Britt et al.* [2002]. Microscopic porosity is assumed to be 10 % that is a typical value of meteorites.

Gravity measurement 1999JU3 RARR from Earth free-fall &

LIDAR ranging

Hayabusa vs Hayabusa-2 alignment measurement

In Hayabusa, NIRS has 1 um band, where the LIDAR footprint could be detected so that the LIDAR boresight direction was determined within 1.7 mrad (0.1 deg) FOV of NIRS.

- In Hayabusa-2, no sensitivity at 1 um range in NIRS3*.
- Optical link experiment gives opportunity to determine alignment w.r.t. spacecraft.
- As FOV of LIDAR transmitter is 1 mrad and spacecraft attitude error is 0.5 mrad, boresight direction will be determined within 1.5 mrad.
- 1.5mrad accuracy satisfies the requirement of the volume measurement of asteroid.

Telescope parameters

rerescope parameters					
parameter	NICT 1.5m	LIDAR			
Transmitter					
wavelength, nm	1064	1064			
Laser pulse energy, mJ	1200	10			
Repetition frequency, Hz	10	1			
Pulse width, ns	10	<10			
Beam divergence, mrad	0.01	1			
Receiver					
Telescope diameter, m	1.5	0.11			
Detector FOV, mrad	0.1	1.5			
Pointing					
Pointing accuracy, mrad	~ 0.01 (~2 arcsec)	0.5 (attitude stability)			
Scanning					
Scan rate, mrad/s	TBD (arcsec step)	0.5 TBD			
Scan amplitude, mrad	TBD	5			

Link equation

Uplink : NICT 1.5m -> LIDAR Downlink: LIDAR -> NICT1.5m

Uplink case, the receiving power Ps [W] (uplink) is calculated as follows:

$$P_s = P_t \bullet \eta_t \bullet G_t \bullet \eta_r \bullet L_p \bullet L_s(r) \bullet G_r \bullet L_0$$

, which is converted to output voltage of detector (APD) with 500kV/W responsivity

Downlink case, single photon is detected with APD Geiger mode at ground station, therefore the number of photoelectorn Npe is a measure of detection, which is calculated by using laser energy Et as follows:

$$N_{pe} = \eta_q \bullet (E_t/h\nu) \bullet \eta_t \bullet G_t \bullet \eta_r \bullet L_p \bullet L_s(r) \bullet G_r \bullet L_0$$

Link equation: parameters

Symbol	meaning	Value(uplink)	Value(downlink)
P_t	Transmitter power	120 MW (/pulse)	
E_t	Transmitter energy		0.01 J
η_q	Quantum efficiency		0.2
η_t	Transmitter efficiency	0.8	0.8
G_t	Transmitter gain *	1.6E11	1.6E7
η_r	Receiver efficiency	0.5	0.5
L_p	Pointing loss	0.487	0.487
$L_s(r)$	Space loss	1.2E-34 @ 0.05 AU	
G_r	Receiver gain	1.05E11	1.96E13
L_0	Other losses	0.5	0.5

^{*} Calculated from beam divergence angle

Link budget (uplink)

Link budget (Downlink)

Sun-Spacecraft-Earth angle limitation (SPE angle>120 or 130 degrees)

 The angle between Sun direction and normal of the solar panel must be within 60 (or 50)

Nominal attitude of S/C

Solar panel toward Sun

SPE angle near Earth Swing-by

Chances of experiment at Koganei

An example: Nov. 6, 2015

Summary

- If opt-link is possible, it can constrain the LIDAR FOV alignment w.r.t. spacecraft within 1.5 mrad.
- Link budget
 - Uplink: further than the downlink case is possible
 - Downlink: up to 0.3 AU might be possible
- Chance of observation
 - 4 hours/day is possible at least within a month prior to Earth swing-by